Products

Charts

Resources

Products

Charts

Resources

Back to Blog

by Finage at July 18, 2023 5 MIN READ

Real-Time Data

How to Develop More Complex and Unique Trading Strategies with Python

 

Forex trading is volatile, something that any veteran or even newbie trader in this sphere is well aware of. Therefore, many traders go far and beyond to create and employ profitable strategies. A great trading strategy will without a doubt increase your chances of profitability, regardless of the sometimes shaky stage of the markets. You can also get into the development of more complex trading strategies with Python that involve acquiring a grasp of key financial libraries and you can even create your currency converter page with Flask.

 

With this in mind, let us look at creating a trading strategy in Python and why it increases your trading prowess. After getting a better grasp of Pythis as a smooth solution, you can further proceed to master its use in trading. So let’s look at how you can generate effective strategies that enable you to increase the chances of profit whenever you trade!

 

Contents:

- Python benefits for the niche

- Creating complex strategies in Python

- Gather all the important libraries

- Make the financial data class for the algorithm

- Strategy class

- Adding a class object and performing a back-test

- Make the tear sheet

- Final thoughts

Python benefits for the niche

Before we proceed further, it’s important to briefly highlight the importance of Python in strategy creation. Understanding its role and various features can give any trader more insight to develop even more unique strategies that eventually lead to more profits. This uptrend has continued to attract more traders and as of 2023, there are 10 million traders today.

 

Here are some of the reasons why Python would be your go-to:

- Python is valued for its simplicity (especially among beginners)

- Great tool for data analysis and presentation

- Provides a streamlined data integration with numerous trading sites

- It is free to use and provides room for modification

- Enables programmers to improve software quality whenever convenient

Creating complex strategies in Python

To get a proper solution, you have different options for starting your project with Python, depending on your requirements and needs. For example, you can gather historical financial data and make data analyses to identify patterns and trends and get quick financial results. Once equipped with insights, you can proceed to code trading algorithms and strategies using Python. You can use and add historical data, providing a simulated environment to evaluate the strategies' performance. You can optimize the strategies based on the outcomes of the backtesting process.

 

Interestingly enough, the current value of trading markets is expected to continue rising as well as its digital solutions. The global exchange services market is projected to increase from $6,7 billion to $7,5 billion in 2023. This upward trajectory indicates a compound annual growth rate (CAGR) of 10.8%. It also influences the trading market and trading algorithm development that can vary from one strategy and approach to another. While some traders use one strategy for various stock symbols, others prefer the creation of unique algorithms for each stock symbol they work with.

 

We will primarily focus on the former. In this instance, you will understand how a unique strategy will be implemented to any stock options, at any particular time and how you can further improve your optimization techniques. The following steps will guide you through the process:

 

Gather all the important libraries

Your initial move will be to download all the important libraries. Any library on Python can easily be manually installed in a single step by using this command python3 <FILE_NAME>.py install. Programmers can alternatively use the pip command (s the above) to uninstall files if necessary. 

 

Make the financial data class for the algorithm

Transferring data from one system or program is vital for effective trading to take place. This movement of data can only be facilitated by the creation of a Python data class, which will play the role of a storage point for all the financial data your algorithm will require to function.

 

Each data class usually contains the following details:

- Identification Symbol: each class is assigned a specific symbol that serves as a unique identifier.

- End-date Parameter: an end-date parameter is included, establishing the conclusion point for the data and providing a temporal boundary.

- Specific Period (in days): The class specification includes a defined period, usually measured in days, the systems have to continuously download financial data.

 

The financial data class will further take part in the function of all the strategy classes created afterward. It serves as a main component, providing essential data that forms the basis for the development.

 

Strategy class

All the algorithms used in your trading practices will share a strategy class. In this case, we will look at a Bollinger band-based strategy). This Strategy class is designed to perform the following tasks:

- Create an indicator to visualize specific data that will run through the system

- Perform the first back-test to assess the initial data parameters in our algorithm

- Providing necessary optimization, which through various values detects the ranges that provide the best outcomes

- Analysis of the optimized strategy to detect any room for further improvement

Adding a class object and performing a back-test

After the creation of a class, you can quickly add an object by using the class constructor. As a result, you will have a defined object for the trading strategy you are creating. This function provided further optimization by going through more data to further refine the strategy. Eventually, all the collected values will be represented on a graph that shows the best-performing parameters in the dataset.

 

Make the tear sheet

Finally, you can create a tear sheet that shows all important information of the best-performing parameter. All backtest data is included here to help you highlight vital values if you need to share them with another trader.

 

Summing up, Python-based trading solutions can also come equipped with historical charts, fundamentals, and real-time prices. It is trading necessitates that are used with many other tools. Accomplished traders rely on trading apps, widgets, and advanced tools, offering versatile diverse solutions.

 

Final thoughts

Trading strategies are getting more refined with each year and this trend will continue. Coming up with newer strategies is an effective way of remaining competitive. As highlighted above, the value of trading markets is going up.

 

With the many participants in the race, having a well-planned and executed trading strategy gives you an upper hand. We've looked at how using Python can guide you to better trading as you create more complex and effective strategies. Having a collective of useful parameters and tools to monitor progress creates room for better results.




You can get your Real-Time and Historical Market Data with a free API key.

Build with us today!

Start Free Trial

Categories

Forex

Finage Updates

Stocks

Real-Time Data

Finage News

Crypto

ETFs

Indices

Technical Guides

Financial Statements

Excel Plugin

Web3

Tags

Developing Complex Trading Strategies with Python

Advanced Python Techniques for Unique Trading Strategies

Crafting Unique Trading Strategies Using Python

Python for Complex Trading Strategy Development

Building Advanced Trading Strategies with Python

Enhancing Trading Strategies with Python's Capabilities

Python Programming for Sophisticated Trading Strategies

Creating Unique and Complex Trading Algorithms in Python

Python in Developing Innovative Trading Strategies

Leveraging Python for Advanced Trading Strategy Creation

Python-Based Approaches to Complex Trading Solutions

Developing Distinctive Trading Strategies with Python Skills

Python as a Tool for Crafting Advanced Trading Strategies

Customized Trading Strategy Development Using Python

Python's Role in Advanced Trading Strategy Formulation

Innovating in Trading Strategies with Python Programming

Python for Creating Unique Trading System Strategies

Advanced Trading Strategy Design with Python

Python for Elaborate and Unique Trading Technique Development

Crafting Next-Level Trading Strategies Through Python

Join Us

You can test all data feeds today!

Start Free Trial

If you need more information about data feeds, feel free to ask our team.

Request Consultation

Back to Blog

Request a consultation

Blog

IEX Cloud Shutdown or Why Finage is Your Best Alternative

In May 2024, IEX Cloud announced that they were closing their company and would be retiring on August 31, 2024. Because of this, the IEX customers are now looking for a reliable alternative to maintain their operations. Many of them are stuck in the position of looking into different companies and

Stock Market Mastery: Insights for Today's Investor

In today's fast-paced financial world, navigating the stock market can seem like a daunting task. The constant flux of market trends, coupled with an overwhelming amount of information, can leave even seasoned investors feeling overwhelmed. Yet, mastering the stock market remains an attainable goa

Read more

Please note that all data provided under Finage and on this website, including the prices displayed on the ticker and charts pages, are not necessarily real-time or accurate. They are strictly intended for informational purposes and should not be relied upon for investing or trading decisions. Redistribution of the information displayed on or provided by Finage is strictly prohibited. Please be aware that the data types offered are not sourced directly or indirectly from any exchanges, but rather from over-the-counter, peer-to-peer, and market makers. Therefore, the prices may not be accurate and could differ from the actual market prices. We want to emphasize that we are not liable for any trading or investing losses that you may incur. By using the data, charts, or any related information, you accept all responsibility for any risks involved. Finage will not accept any liability for losses or damages arising from the use of our data or related services. By accessing our website or using our services, all users/visitors are deemed to have accepted these conditions.

Finage LTD 2024

Copyright